If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+20x^2-100=0
We add all the numbers together, and all the variables
23x^2-100=0
a = 23; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·23·(-100)
Δ = 9200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9200}=\sqrt{400*23}=\sqrt{400}*\sqrt{23}=20\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{23}}{2*23}=\frac{0-20\sqrt{23}}{46} =-\frac{20\sqrt{23}}{46} =-\frac{10\sqrt{23}}{23} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{23}}{2*23}=\frac{0+20\sqrt{23}}{46} =\frac{20\sqrt{23}}{46} =\frac{10\sqrt{23}}{23} $
| K/3k+6=-6 | | n-2-4n=-5 | | 4;f=-15 | | 7w-3w+4w-7w-1=12 | | -14(2x+5)+2x+3=-11 | | 5+2n-n=7 | | X=180-102-(4x+6) | | -10(1+6m)+m=-9m-10 | | 14j-12j-2=10 | | 0.02(y-3)+0.12y=0.08y-0.3 | | -3n+4+4n=0 | | 8p+6p-7p+3=17 | | 2^(2x+9)=17 | | -4x+7x-15=72 | | -4n+n+3=12 | | -6k+9k=-15 | | a=2,5=-7 | | -7(4+6a)=8a-28 | | 180=102-(4x+6)-x | | -12x^2=12 | | (7x)+30+(10x)=180 | | 3x-4(-2x+17)=-2 | | 3(x-10)^2=48 | | 8x+8(5-x)=40 | | 0.7+y=−1.34y | | -5(1+6x)=33+8x | | 4x^2+2x+17=1 | | 74/7x3=x | | -7j+15j-12j+3=-9 | | 15x=12+5 | | 4t+6=(–2–8t) | | 3.8x4.2=15.96 |